10.6 Videos Guide

10.6a

- Polar equation of a conic section
 - o Horizontally oriented

o Vertically oriented

$$r = \frac{ed}{1 \pm e \sin \theta}$$

- Description of the eccentricity *e*
 - $\circ \quad e = \frac{\text{distance from a point on the curve to the focus}}{\text{distance from the point to the directrix}}$
- Determining a conic section from the eccentricity *e*
 - \circ Parabola if e=1
 - o Ellipse if e < 1
 - o Hyperbola if e > 1

10.6b

Exercises:

- Write a polar equation of a conic with the focus at the origin and the given data.
 - o Parabola, directrix x = -3
 - \circ Ellipse, eccentricity 0.6, directrix $r = 4 \csc \theta$
- Find the eccentricity, (b) identify the conic, (c) give an equation of the directrix, and (d) sketch the conic.

$$r = \frac{1}{2 + \sin \theta}$$

10.6c

Exercise:

• Find the eccentricity, (b) identify the conic, (c) give an equation of the directrix, and (d) sketch the conic.

$$r = \frac{5}{2 - 4\cos\theta}$$

10.6d

- Polar equations of orbits
 - $cong r = \frac{a(1-e^2)}{1+e\cos\theta}, \text{ where } a \text{ is the length of the semimajor axis}$
 - o Perihelion (closest) distance: r = a(1 e)
 - Aphelion (farthest) distance: r = a(1 + e)

Exercise:

• Jupiter's orbit has eccentricity 0.048 and the length of the major axis is 1.56×10^9 km. Find a polar equation for the orbit.